The edge-face choosability of plane graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The edge-face choosability of plane graphs

A plane graph G is said to be k-edge-face choosable if, for every list L of colors satisfying |L(x)| = k for every edge and face x , there exists a coloring which assigns to each edge and each face a color from its list so that any adjacent or incident elements receive different colors. We prove that every plane graph G with maximum degree ∆(G) is (∆(G)+ 3)-edge-face choosable. © 2004 Elsevier ...

متن کامل

Choosability, Edge Choosability, and Total Choosability of Outerplane Graphs

Let χl (G), χ ′ l (G), χ ′′ l (G), and 1(G) denote, respectively, the list chromatic number, the list chromatic index, the list total chromatic number, and the maximum degree of a non-trivial connected outerplane graph G. We prove the following results. (1) 2 ≤ χl (G) ≤ 3 and χl (G) = 2 if and only if G is bipartite with at most one cycle. (2) 1(G) ≤ χ ′ l (G) ≤ 1(G) + 1 and χ ′ l (G) = 1(G) + ...

متن کامل

Choosability and edge choosability of planar graphs without five cycles

It is proved that a planar graph G without five cycles is three degenerate, hence, four choosable, and it is also edge-(A( G) + l)h c oosable. @ 2002 Elsevier Science Ltd. All rights reserved. Keywords-Choosability, Edge choosability, Degeneracy, Planar graph.

متن کامل

Edge-face coloring of plane graphs with maximum degree nine

An edge-face colouring of a plane graph with edge set E and face set F is a colouring of the elements of E ∪ F so that adjacent or incident elements receive different colours. Borodin [Simultaneous coloring of edges and faces of plane graphs, Discrete Math., 128(1-3):21–33, 1994] proved that every plane graph of maximum degree ∆ > 10 can be edge-face coloured with ∆ + 1 colours. We extend Borod...

متن کامل

The 3-choosability of plane graphs of girth 4

A set S of vertices of the graph G is called k-reducible if the following is true: G is k-choosable if and only if G − S is k-choosable. A k-reduced subgraph H of G is a subgraph of G such that H contains no k-reducible set of some specific forms. In this paper, we show that a 3-reduced subgraph of a non-3-choosable plane graph G contains either adjacent 5-faces, or an adjacent 4-face and kface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: European Journal of Combinatorics

سال: 2004

ISSN: 0195-6698

DOI: 10.1016/j.ejc.2003.12.007